Open For Enrollment

Would you like to enroll?

Enrollment for this course has closed. But you can enroll in a future offering (please select)

Enrollment has closed

Enrollment for this course is currently closed, but the next offering will be available shortly. Check back soon!

Length
9 Sessions (adaptive)
Price
Audit (Free)
Premium ($10 USD / Month)
Institution
Stanford University
Subject
Music, Creative Computing, Mathematics of Art
Skill Level
Intermediate
Video Transcripts
English
Topics
Chuck, Synthesis, Physical Modeling, Waveguide Models, Voice Models, Digital Audio
Course Description

This course introduces the basics of Digital Signal Processing and computational acoustics, motivated by the vibrational physics of real-world objects and systems. We will build from a simple mass-spring and pendulum to demonstrate oscillation, learn how to simulate those systems in the computer, and also prove that these simple oscillations behave as a sine wave. From that we move to plucked strings and struck bars, showing both solutions as combined traveling waves and combined sine wave harmonics. We continue to build and simulate more complex systems containing many vibrating objects and resonators (stringed instruments, drum, plate), and also learn how to simulate echos and room reverberation. Through this process, we will learn about digital signals, filters, oscillators, harmonics, spectral analysis, linear and non-linear systems, particle models, and all the necessary building blocks to synthesize essentially any sound. The free open-source software provided will make it possible for anyone to use physical models in their art-making, game or movie sound, or any other application.

schedule

This course is in Adaptive mode, and is open for enrollment. Learn more about Adaptive courses here.

Session 1: The Time Domain: Sound, Digital Audio, PCM files, Noise vs. Pitch, a Hint of Spectra
a) Sound in Air, Traveling Waves b) Digital Audio, Sampling, Quantization, Aliasing c) Soundfiles, Wavetables, Manipulating PCM d) Pitch (vs. Noise), Spectral Analysis 0.1 e) Time-domain Pitch/Noise Detection: ZeroXings, AMDF, Autocorrelation
Session 2: Physics, Oscillators, Sines & Spectra, Spectral/Additive Synthesis
a) Mass-Spring-Damper system, also simple Pendulum b) Fourier analysis/synthesis, Spectrum Analysis 1.0 c) More on additive Sine-wave synthesis
Session 3: Digital Filters, Modal Synthesis
a) Digital Filters, Finite Impulse Response (FIR) b) Linearity, Time-invariance, Convolution c) Infinite Impulse Response (IIR) Digital Filters d) BiQuad Resonator Filter, Modal Synthesis
Session 4: Physical Modeling Synthesis: 1D systems
a) 1-D systems, Strings, Modal (Fourier) Solution b) Strings II: Waveguide (D’Alembert) Solution c) 1-D systems, Bars, Tubes, solutions d) Advanced Waveguide Synthesis for 1-D systems
Session 5: Physical Modeling II: 2 and 3-D Systems
a) 2-D systems, plates, drums, higher-order modes Fourier (Sine and/or Modal) Solutions, Waveguide Solutions b) 3-D systems, rooms, resonators, Meshes, Waveguides c) Resonator/Modal view and solution of 3-D systems Pop bottles and other lumped resonators
Session 6: Subtractive Synthesis, Vocal Sounds and Models
a)  Subtractive Synthesis, Voice Synthesis, Formants b) Linear Prediction, LPC c) FOFs d) FM Synthesis: Horns, Bells, Voices
Session 7: Grains, Particles and Statistical Models
a) Wavelets b) Granular Synthesis c) Particle Models, Statistical Modal Synthesis d) Wind, Water, Surf, and Other Whooshing Sounds
Session 8: Extending and Refining Physical Synthesis Models
a) Waveshaping Synthesis, Distortion Modeling b) Time-Varying Systems c) Stiffness, All-Pass Filters, Banded Waveguides d) Commuted Synthesis e) JULIUS on KS, strings, demos
Session 9: Tying it All Together: Applications, Sonification, Interactions, and Control
a) Scanned Synthesis b)  Don’t forget the laptop!!! SMELT:   c) Controlling Synthesis with game controllers (Wii, mobile TouchOSC, more) d) Walking Synthesis, a complete system e) Procedural Audio: Driving synthesis from process, game state, etc. f) Data set Sonification
Show off your Certificate of Accomplishment

Verify Your Achievements
Whenever you complete a course as a premium member, you can earn a verified Statement of Accomplishment. These statements are proof that you completed an online course on our platform.

Easily Shareable
Using its unique link, you can share your statement with everyone from future employers and schools, to friends, family, and colleagues. It's the perfect tool to help you land that new job or promotion, apply to college, or simply share your achievements with the world.

Enroll for College Credit

Credit Eligible

Kadenze has partnered with Stanford University to offer this course for college credits.*

How much does it cost?

This course costs $0 USD to take for college credit.

*Upon completion, this rigorous college-level course will provide credits that are recognized and transferable from the partnering institution. Credit as workload and transferability is defined by the granting institution. Participation in these courses does not represent an acceptance decision or admission from the institution that offers them.

Learning Outcomes

Below you will find an overview of the Learning Outcomes you will achieve as you complete this course.

Grading Policy
Course Great Breakdown Chart
Total: 100.00%

Plagiarism: We learn by doing our own work, and by collaborating with other students. Discussing course content and assignments with your peers is an important and helpful way to deepen your learning. However, encouraging others to copy your homework and submit it as their own is a form of cheating. So please don't post your completed assignments or correct answers to quizzes, tests, or other assessments to the discussion forums or in repositories outside of Kadenze.

Instructors & Guests
What You Need to Take This Course
  • Materials:
  • Equipment:
  • Software: ChucK (also optionally STK, PeRColate for Max/MSP, Processing, GL/Glut)
  • Recommended (highly) Textbook:

Real Sound Synthesis for Interactive Applications (Kadenze discount available in Course Resources when course begins: Free Users=20%, Premium=50%).

  • Familiarity with ChucK programming language

Introduction to Programming for Musicians and Digital Artists (Kadenze ChucK course)

Programming for Musicians and Digital Artists (ChucK book, Kadenze Discount available in Course Resources when course begins)

  • Operating system: Mac OS X, Windows, or Linux (Planet CCRMA recommended)
  • Desired: familiarity with algebra. no calculus required.
  • Helpful to have: some personal sound-making things: a guitar or other stringed instrument, a drum, a kitchen pan, a prayer bowl, glasses, bowls, voice...
Additional Information

Please note: Taking part in a Kadenze course as a Premium Member, does not affirm that a student has been enrolled or accepted for enrollment by Stanford University. 

Peer Assessment Code of Conduct: Part of what makes Kadenze a great place to learn is our community of students. While you are completing your Peer Assessments, we ask that you help us maintain the quality of our community. Please:

  • Be Polite. Show your fellow students courtesy. No one wants to feel attacked - ever. For this reason, insults, condescension, or abuse will not be tolerated.
  • Show Respect. Kadenze is a global community. Our students are from many different cultures and backgrounds. Please be patient, kind, and open-minded when discussing topics such as race, religion, gender, sexual orientation, or other potentially controversial subjects.
  • Post Appropriate Content. We believe that expression is a human right and we would never censor our students. With that in mind, please be sensitive of what you post in a Peer Assessment. Only post content where and when it is appropriate to do so.

Please understand that posts which violate this Code of Conduct harm our community and may be deleted or made invisible to other students by course moderators. Students who repeatedly break these rules may be removed from the course and/or may lose access to Kadenze.

Students with Disabilities: Students who have documented disabilities and who want to request accommodations should refer to the student help article via the Kadenze support center.  Kadenze is committed to making sure that our site is accessible to everyone. Configure your accessibility settings in your Kadenze Account Settings.   

Reviews